Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w25738 |
来源ID | Working Paper 25738 |
Combining Administrative and Survey Data to Improve Income Measurement | |
Bruce D. Meyer; Nikolas Mittag | |
发表日期 | 2019-04-15 |
出版年 | 2019 |
语种 | 英语 |
摘要 | We describe methods of combining administrative and survey data to improve the measurement of income. We begin by decomposing the total survey error in the mean of survey reports of dollars received from a government transfer program. We decompose this error into three parts, generalized coverage error (which combines coverage and unit non-response error and any error from weighting), item non-response or imputation error, and measurement error. We then discuss these three sources of error in turn and how linked administrative and survey data can assess and reduce each of these sources. We then illustrate the potential of linked data by showing how using linked administrative variables improves the measurement of income and poverty in the Current Population Survey, focusing on the substitution of administrative for survey data for three government transfer programs. Finally, we discuss how one can examine the accuracy of the underlying links used in the combined data. |
主题 | Econometrics ; Data Collection ; Microeconomics ; Market Structure and Distribution ; Health, Education, and Welfare ; Poverty and Wellbeing |
URL | https://www.nber.org/papers/w25738 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/583412 |
推荐引用方式 GB/T 7714 | Bruce D. Meyer,Nikolas Mittag. Combining Administrative and Survey Data to Improve Income Measurement. 2019. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w25738.pdf(464KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Bruce D. Meyer]的文章 |
[Nikolas Mittag]的文章 |
百度学术 |
百度学术中相似的文章 |
[Bruce D. Meyer]的文章 |
[Nikolas Mittag]的文章 |
必应学术 |
必应学术中相似的文章 |
[Bruce D. Meyer]的文章 |
[Nikolas Mittag]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。