G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w25819
来源IDWorking Paper 25819
Errors in the Dependent Variable of Quantile Regression Models
Jerry A. Hausman; Haoyang Liu; Ye Luo; Christopher Palmer
发表日期2019-05-13
出版年2019
语种英语
摘要The popular quantile regression estimator of Koenker and Bassett (1978) is biased if there is an additive error term. Approaching this problem as an errors-in-variables problem where the dependent variable suffers from classical measurement error, we present a sieve maximum-likelihood approach that is robust to left-hand side measurement error. After providing sufficient conditions for identification, we demonstrate that when the number of knots in the quantile grid is chosen to grow at an adequate speed, the sieve maximum-likelihood estimator is consistent and asymptotically normal, permitting inference via bootstrapping. We verify our theoretical results with Monte Carlo simulations and illustrate our estimator with an application to the returns to education highlighting changes over time in the returns to education that have previously been masked by measurement-error bias.
主题Econometrics ; Estimation Methods ; Health, Education, and Welfare ; Education ; Labor Economics ; Labor Compensation
URLhttps://www.nber.org/papers/w25819
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583492
推荐引用方式
GB/T 7714
Jerry A. Hausman,Haoyang Liu,Ye Luo,et al. Errors in the Dependent Variable of Quantile Regression Models. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w25819.pdf(1578KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jerry A. Hausman]的文章
[Haoyang Liu]的文章
[Ye Luo]的文章
百度学术
百度学术中相似的文章
[Jerry A. Hausman]的文章
[Haoyang Liu]的文章
[Ye Luo]的文章
必应学术
必应学术中相似的文章
[Jerry A. Hausman]的文章
[Haoyang Liu]的文章
[Ye Luo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w25819.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。