G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w25837
来源IDWorking Paper 25837
Transforming Naturally Occurring Text Data Into Economic Statistics: The Case of Online Job Vacancy Postings
Arthur Turrell; Bradley J. Speigner; Jyldyz Djumalieva; David Copple; James Thurgood
发表日期2019-05-20
出版年2019
语种英语
摘要Using a dataset of 15 million UK job adverts from a recruitment website, we construct new economic statistics measuring labour market demand. These data are ‘naturally occurring’, having originally been posted online by firms. They offer information on two dimensions of vacancies—region and occupation—that firm-based surveys do not usually, and cannot easily, collect. These data do not come with official classification labels so we develop an algorithm which maps the free form text of job descriptions into standard occupational classification codes. The created vacancy statistics give a plausible, granular picture of UK labour demand and permit the analysis of Beveridge curves and mismatch unemployment at the occupational level.
主题Econometrics ; Estimation Methods ; Macroeconomics ; Consumption and Investment ; Labor Economics ; Unemployment and Immigration
URLhttps://www.nber.org/papers/w25837
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583510
推荐引用方式
GB/T 7714
Arthur Turrell,Bradley J. Speigner,Jyldyz Djumalieva,et al. Transforming Naturally Occurring Text Data Into Economic Statistics: The Case of Online Job Vacancy Postings. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w25837.pdf(853KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Arthur Turrell]的文章
[Bradley J. Speigner]的文章
[Jyldyz Djumalieva]的文章
百度学术
百度学术中相似的文章
[Arthur Turrell]的文章
[Bradley J. Speigner]的文章
[Jyldyz Djumalieva]的文章
必应学术
必应学术中相似的文章
[Arthur Turrell]的文章
[Bradley J. Speigner]的文章
[Jyldyz Djumalieva]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w25837.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。