G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26165
来源IDWorking Paper 26165
Predicting Consumer Default: A Deep Learning Approach
Stefania Albanesi; Domonkos F. Vamossy
发表日期2019-08-19
出版年2019
语种英语
摘要We develop a model to predict consumer default based on deep learning. We show that the model consistently outperforms standard credit scoring models, even though it uses the same data. Our model is interpretable and is able to provide a score to a larger class of borrowers relative to standard credit scoring models while accurately tracking variations in systemic risk. We argue that these properties can provide valuable insights for the design of policies targeted at reducing consumer default and alleviating its burden on borrowers and lenders, as well as macroprudential regulation.
主题Econometrics ; Estimation Methods ; Microeconomics ; Households and Firms ; Macroeconomics ; Money and Interest Rates ; Financial Economics ; Financial Institutions
URLhttps://www.nber.org/papers/w26165
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583839
推荐引用方式
GB/T 7714
Stefania Albanesi,Domonkos F. Vamossy. Predicting Consumer Default: A Deep Learning Approach. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26165.pdf(1524KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Stefania Albanesi]的文章
[Domonkos F. Vamossy]的文章
百度学术
百度学术中相似的文章
[Stefania Albanesi]的文章
[Domonkos F. Vamossy]的文章
必应学术
必应学术中相似的文章
[Stefania Albanesi]的文章
[Domonkos F. Vamossy]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26165.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。