G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26174
来源IDWorking Paper 26174
Selection into Identification in Fixed Effects Models, with Application to Head Start
Douglas L. Miller; Na’ama Shenhav; Michel Z. Grosz
发表日期2019-08-26
出版年2019
语种英语
摘要Many papers use fixed effects (FE) to identify causal impacts of an intervention. In this paper we show that when the treatment status only varies within some groups, this design can induce non-random selection of groups into the identifying sample, which we term selection into identification (SI). We begin by illustrating SI in the context of several family fixed effects (FFE) applications with a binary treatment variable. We document that the FFE identifying sample differs from the overall sample along many dimensions, including having larger families. Further, when treatment effects are heterogeneous, the FFE estimate is biased relative to the average treatment effect (ATE). For the general FE model, we then develop a reweighting-on-observables estimator to recover the unbiased ATE from the FE estimate for policy-relevant populations. We apply these insights to examine the long-term effects of Head Start in the PSID and the CNLSY. Using our reweighting methods, we estimate that Head Start leads to a 2.6 percentage point (p.p.) increase (s.e. = 6.2 p.p.) in the likelihood of attending some college for white Head Start participants in the PSID. This ATE is 78% smaller than the traditional FFE estimate (12 p.p). Reweighting the CNLSY FE estimates to obtain the ATE produces similar attenuation in the estimated impacts of Head Start.
主题Econometrics ; Estimation Methods ; Health, Education, and Welfare ; Education ; Poverty and Wellbeing ; Labor Economics ; Demography and Aging
URLhttps://www.nber.org/papers/w26174
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583847
推荐引用方式
GB/T 7714
Douglas L. Miller,Na’ama Shenhav,Michel Z. Grosz. Selection into Identification in Fixed Effects Models, with Application to Head Start. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26174.pdf(955KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Douglas L. Miller]的文章
[Na’ama Shenhav]的文章
[Michel Z. Grosz]的文章
百度学术
百度学术中相似的文章
[Douglas L. Miller]的文章
[Na’ama Shenhav]的文章
[Michel Z. Grosz]的文章
必应学术
必应学术中相似的文章
[Douglas L. Miller]的文章
[Na’ama Shenhav]的文章
[Michel Z. Grosz]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26174.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。