G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26186
来源IDWorking Paper 26186
Predicting Returns With Text Data
Zheng Tracy Ke; Bryan T. Kelly; Dacheng Xiu
发表日期2019-09-02
出版年2019
语种英语
摘要We introduce a new text-mining methodology that extracts sentiment information from news articles to predict asset returns. Unlike more common sentiment scores used for stock return prediction (e.g., those sold by commercial vendors or built with dictionary-based methods), our supervised learning framework constructs a sentiment score that is specifically adapted to the problem of return prediction. Our method proceeds in three steps: 1) isolating a list of sentiment terms via predictive screening, 2) assigning sentiment weights to these words via topic modeling, and 3) aggregating terms into an article-level sentiment score via penalized likelihood. We derive theoretical guarantees on the accuracy of estimates from our model with minimal assumptions. In our empirical analysis, we text-mine one of the most actively monitored streams of news articles in the financial system|the Dow Jones Newswires|and show that our supervised sentiment model excels at extracting return-predictive signals in this context.
主题Econometrics ; Estimation Methods ; Financial Economics ; Financial Markets ; Portfolio Selection and Asset Pricing ; Behavioral Finance
URLhttps://www.nber.org/papers/w26186
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583858
推荐引用方式
GB/T 7714
Zheng Tracy Ke,Bryan T. Kelly,Dacheng Xiu. Predicting Returns With Text Data. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26186.pdf(1445KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zheng Tracy Ke]的文章
[Bryan T. Kelly]的文章
[Dacheng Xiu]的文章
百度学术
百度学术中相似的文章
[Zheng Tracy Ke]的文章
[Bryan T. Kelly]的文章
[Dacheng Xiu]的文章
必应学术
必应学术中相似的文章
[Zheng Tracy Ke]的文章
[Bryan T. Kelly]的文章
[Dacheng Xiu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26186.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。