G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26244
来源IDWorking Paper 26244
Leave-out Estimation of Variance Components
Patrick Kline; Raffaele Saggio; Mikkel Sølvsten
发表日期2019-09-09
出版年2019
语种英语
摘要We propose leave-out estimators of quadratic forms designed for the study of linear models with unrestricted heteroscedasticity. Applications include analysis of variance and tests of linear restrictions in models with many regressors. An approximation algorithm is provided that enables accurate computation of the estimator in very large datasets. We study the large sample properties of our estimator allowing the number of regressors to grow in proportion to the number of observations. Consistency is established in a variety of settings where plug-in methods and estimators predicated on homoscedasticity exhibit first-order biases. For quadratic forms of increasing rank, the limiting distribution can be represented by a linear combination of normal and non-central χ² random variables, with normality ensuing under strong identification. Standard error estimators are proposed that enable tests of linear restrictions and the construction of uniformly valid confidence intervals for quadratic forms of interest. We find in Italian social security records that leave-out estimates of a variance decomposition in a two-way fixed effects model of wage determination yield substantially different conclusions regarding the relative contribution of workers, firms, and worker-firm sorting to wage inequality than conventional methods. Monte Carlo exercises corroborate the accuracy of our asymptotic approximations, with clear evidence of non-normality emerging when worker mobility between blocks of firms is limited.
主题Econometrics ; Estimation Methods ; Labor Economics ; Labor Compensation
URLhttps://www.nber.org/papers/w26244
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583916
推荐引用方式
GB/T 7714
Patrick Kline,Raffaele Saggio,Mikkel Sølvsten. Leave-out Estimation of Variance Components. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26244.pdf(3291KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Patrick Kline]的文章
[Raffaele Saggio]的文章
[Mikkel Sølvsten]的文章
百度学术
百度学术中相似的文章
[Patrick Kline]的文章
[Raffaele Saggio]的文章
[Mikkel Sølvsten]的文章
必应学术
必应学术中相似的文章
[Patrick Kline]的文章
[Raffaele Saggio]的文章
[Mikkel Sølvsten]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26244.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。