G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26250
来源IDWorking Paper 26250
Panel Data and Experimental Design
Fiona Burlig; Louis Preonas; Matt Woerman
发表日期2019-09-09
出版年2019
语种英语
摘要How should researchers design panel data experiments? We analytically derive the variance of panel estimators, informing power calculations in panel data settings. We generalize Frison and Pocock (1992) to fully arbitrary error structures, thereby extending McKenzie (2012) to allow for non-constant serial correlation. Using Monte Carlo simulations and real world panel data, we demonstrate that failing to account for arbitrary serial correlation ex ante yields experiments that are incorrectly powered under proper inference. By contrast, our “serial-correlation-robust” power calculations achieve correctly powered experiments in both simulated and real data. We discuss the implications of these results, and introduce a new software package to facilitate proper power calculations in practice.
主题Other ; History of Economic Thought ; Econometrics ; Estimation Methods ; Experimental Design ; Development and Growth ; Development ; Environmental and Resource Economics ; Energy
URLhttps://www.nber.org/papers/w26250
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583922
推荐引用方式
GB/T 7714
Fiona Burlig,Louis Preonas,Matt Woerman. Panel Data and Experimental Design. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26250.pdf(833KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Fiona Burlig]的文章
[Louis Preonas]的文章
[Matt Woerman]的文章
百度学术
百度学术中相似的文章
[Fiona Burlig]的文章
[Louis Preonas]的文章
[Matt Woerman]的文章
必应学术
必应学术中相似的文章
[Fiona Burlig]的文章
[Louis Preonas]的文章
[Matt Woerman]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26250.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。