G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26178
来源IDWorking Paper 26178
Machine Learning for Solar Accessibility: Implications for Low-Income Solar Expansion and Profitability
Sruthi Davuluri; René García Franceschini; Christopher R. Knittel; Chikara Onda; Kelly Roache
发表日期2019-09-23
出版年2019
语种英语
摘要The solar industry in the US typically uses a credit score such as the FICO score as an indicator of consumer utility payment performance and credit worthiness to approve customers for new solar installations. Using data on over 800,000 utility payment performance and over 5,000 demographic variables, we compare machine learning and econometric models to predict the probability of default to credit-score cutoffs. We compare these models across a variety of measures, including how they affect consumers of different socio-economic backgrounds and profitability. We find that a traditional regression analysis using a small number of variables specific to utility repayment performance greatly increases accuracy and LMI inclusivity relative to FICO score, and that using machine learning techniques further enhances model performance. Relative to FICO, the machine learning model increases the number of low-to-moderate income consumers approved for community solar by 1.1% to 4.2% depending on the stringency used for evaluating potential customers, while decreasing the default rate by 1.4 to 1.9 percentage points. Using electricity utility repayment as a proxy for solar installation repayment, shifting from a FICO score cutoff to the machine learning model increases profits by 34% to 1882% depending on the stringency used for evaluating potential customers.
主题Econometrics ; Estimation Methods ; Industrial Organization ; Market Structure and Firm Performance ; Industry Studies ; Environmental and Resource Economics ; Renewable Resources
URLhttps://www.nber.org/papers/w26178
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/583959
推荐引用方式
GB/T 7714
Sruthi Davuluri,René García Franceschini,Christopher R. Knittel,et al. Machine Learning for Solar Accessibility: Implications for Low-Income Solar Expansion and Profitability. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26178.pdf(783KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sruthi Davuluri]的文章
[René García Franceschini]的文章
[Christopher R. Knittel]的文章
百度学术
百度学术中相似的文章
[Sruthi Davuluri]的文章
[René García Franceschini]的文章
[Christopher R. Knittel]的文章
必应学术
必应学术中相似的文章
[Sruthi Davuluri]的文章
[René García Franceschini]的文章
[Christopher R. Knittel]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26178.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。