G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26340
来源IDWorking Paper 26340
Benchmarking Global Optimizers
Antoine Arnoud; Fatih Guvenen; Tatjana Kleineberg
发表日期2019-10-07
出版年2019
语种英语
摘要We benchmark seven global optimization algorithms by comparing their performance on challenging multidimensional test functions as well as a method of simulated moments estimation of a panel data model of earnings dynamics. Five of the algorithms are taken from the popular NLopt open-source library: (i) Controlled Random Search with local mutation (CRS), (ii) Improved Stochastic Ranking Evolution Strategy (ISRES), (iii) Multi-Level Single-Linkage (MLSL) algorithm, (iv) Stochastic Global Optimization (StoGo), and (v) Evolutionary Strategy with Cauchy distribution (ESCH). The other two algorithms are versions of TikTak, which is a multistart global optimization algorithm used in some recent economic applications. For completeness, we add three popular local algorithms to the comparison—the Nelder-Mead downhill simplex algorithm, the Derivative-Free Non-linear Least Squares (DFNLS) algorithm, and a popular variant of the Davidon-Fletcher-Powell (DFPMIN) algorithm. To give a detailed comparison of algorithms, we use a set of benchmarking tools recently developed in the applied mathematics literature. We find that the success rate of many optimizers vary dramatically with the characteristics of each problem and the computational budget that is available. Overall, TikTak is the strongest performer on both the math test functions and the economic application. The next-best performing optimizers are StoGo and CRS for the test functions and MLSL for the economic application.
主题Econometrics ; Estimation Methods ; Microeconomics ; Mathematical Tools ; General Equilibrium ; Labor Economics ; Labor Compensation
URLhttps://www.nber.org/papers/w26340
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584011
推荐引用方式
GB/T 7714
Antoine Arnoud,Fatih Guvenen,Tatjana Kleineberg. Benchmarking Global Optimizers. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26340.pdf(3161KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Antoine Arnoud]的文章
[Fatih Guvenen]的文章
[Tatjana Kleineberg]的文章
百度学术
百度学术中相似的文章
[Antoine Arnoud]的文章
[Fatih Guvenen]的文章
[Tatjana Kleineberg]的文章
必应学术
必应学术中相似的文章
[Antoine Arnoud]的文章
[Fatih Guvenen]的文章
[Tatjana Kleineberg]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26340.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。