G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26493
来源IDWorking Paper 26493
Estimating The Anomaly Base Rate
Alexander M. Chinco; Andreas Neuhierl; Michael Weber
发表日期2019-11-25
出版年2019
语种英语
摘要The academic literature literally contains hundreds of variables that seem to predict the cross-section of expected returns. This so-called "anomaly zoo" has caused many to question whether researchers are using the right tests of statistical significance. But, here's the thing: even if researchers use the right tests, they will still draw the wrong conclusions from their econometric analyses if they start out with the wrong priors---i.e., if they start out with incorrect beliefs about the ex ante probability of encountering a tradable anomaly.
So, what are the right priors? What is the correct anomaly base rate?
We develop a first way to estimate the anomaly base rate by combining two key insights: 1) Empirical-Bayes methods capture the implicit process by which researchers form priors based on their past experience with other variables in the anomaly zoo. 2) Under certain conditions, there is a one-to-one mapping between these prior beliefs and the best-fit tuning parameter in a penalized regression. We study trading-strategy performance to verify our estimation results. If you trade on two variables with similar one-month-ahead return forecasts in different anomaly-base-rate regimes (low vs. high), the variable in the low base-rate regime consistently underperforms the otherwise identical variable in the high base-rate regime.
主题Econometrics ; Estimation Methods ; Financial Economics ; Portfolio Selection and Asset Pricing
URLhttps://www.nber.org/papers/w26493
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584165
推荐引用方式
GB/T 7714
Alexander M. Chinco,Andreas Neuhierl,Michael Weber. Estimating The Anomaly Base Rate. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26493.pdf(990KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Alexander M. Chinco]的文章
[Andreas Neuhierl]的文章
[Michael Weber]的文章
百度学术
百度学术中相似的文章
[Alexander M. Chinco]的文章
[Andreas Neuhierl]的文章
[Michael Weber]的文章
必应学术
必应学术中相似的文章
[Alexander M. Chinco]的文章
[Andreas Neuhierl]的文章
[Michael Weber]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26493.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。