G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26505
来源IDWorking Paper 26505
Does High Frequency Social Media Data Improve Forecasts of Low Frequency Consumer Confidence Measures?
Steven F. Lehrer; Tian Xie; Tao Zeng
发表日期2019-12-02
出版年2019
语种英语
摘要Social media data presents challenges for forecasters since one must convert text into data and deal with issues related to these measures being collected at different frequencies and volumes than traditional financial data. In this paper, we use a deep learning algorithm to measure sentiment within Twitter messages on an hourly basis and introduce a new method to undertake MIDAS that allows for a weaker discounting of historical data that is well-suited for this new data source. To evaluate the performance of approach relative to alternative MIDAS strategies, we conduct an out of sample forecasting exercise for the consumer confidence index with both traditional econometric strategies and machine learning algorithms. Irrespective of the estimator used to conduct forecasts, our results show that (i) including consumer sentiment measures from Twitter greatly improves forecast accuracy, and (ii) there are substantial gains from our proposed MIDAS procedure relative to common alternatives.
主题Econometrics ; Estimation Methods ; Financial Economics ; Financial Markets
URLhttps://www.nber.org/papers/w26505
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584178
推荐引用方式
GB/T 7714
Steven F. Lehrer,Tian Xie,Tao Zeng. Does High Frequency Social Media Data Improve Forecasts of Low Frequency Consumer Confidence Measures?. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26505.pdf(473KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Steven F. Lehrer]的文章
[Tian Xie]的文章
[Tao Zeng]的文章
百度学术
百度学术中相似的文章
[Steven F. Lehrer]的文章
[Tian Xie]的文章
[Tao Zeng]的文章
必应学术
必应学术中相似的文章
[Steven F. Lehrer]的文章
[Tian Xie]的文章
[Tao Zeng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26505.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。