Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w26531 |
来源ID | Working Paper 26531 |
Using Machine Learning to Target Treatment: The Case of Household Energy Use | |
Christopher R. Knittel; Samuel Stolper | |
发表日期 | 2019-12-09 |
出版年 | 2019 |
语种 | 英语 |
摘要 | We use causal forests to evaluate the heterogeneous treatment effects (TEs) of repeated behavioral nudges towards household energy conservation. The average response is a monthly electricity reduction of 9 kilowatt-hours (kWh), but the full distribution of responses ranges from -30 to +10 kWh. Selective targeting of treatment using the forest raises social net benefits by 12-120 percent, depending on the year and welfare function. Pre-treatment consumption and home value are the strongest predictors of treatment effect. We find suggestive evidence of a "boomerang effect": households with lower consumption than similar neighbors are the ones with positive TE estimates. |
主题 | Econometrics ; Estimation Methods ; Microeconomics ; Behavioral Economics ; Environmental and Resource Economics ; Energy |
URL | https://www.nber.org/papers/w26531 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/584205 |
推荐引用方式 GB/T 7714 | Christopher R. Knittel,Samuel Stolper. Using Machine Learning to Target Treatment: The Case of Household Energy Use. 2019. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w26531.pdf(1823KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。