G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26531
来源IDWorking Paper 26531
Using Machine Learning to Target Treatment: The Case of Household Energy Use
Christopher R. Knittel; Samuel Stolper
发表日期2019-12-09
出版年2019
语种英语
摘要We use causal forests to evaluate the heterogeneous treatment effects (TEs) of repeated behavioral nudges towards household energy conservation. The average response is a monthly electricity reduction of 9 kilowatt-hours (kWh), but the full distribution of responses ranges from -30 to +10 kWh. Selective targeting of treatment using the forest raises social net benefits by 12-120 percent, depending on the year and welfare function. Pre-treatment consumption and home value are the strongest predictors of treatment effect. We find suggestive evidence of a "boomerang effect": households with lower consumption than similar neighbors are the ones with positive TE estimates.
主题Econometrics ; Estimation Methods ; Microeconomics ; Behavioral Economics ; Environmental and Resource Economics ; Energy
URLhttps://www.nber.org/papers/w26531
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584205
推荐引用方式
GB/T 7714
Christopher R. Knittel,Samuel Stolper. Using Machine Learning to Target Treatment: The Case of Household Energy Use. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26531.pdf(1823KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Christopher R. Knittel]的文章
[Samuel Stolper]的文章
百度学术
百度学术中相似的文章
[Christopher R. Knittel]的文章
[Samuel Stolper]的文章
必应学术
必应学术中相似的文章
[Christopher R. Knittel]的文章
[Samuel Stolper]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26531.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。