G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26584
来源IDWorking Paper 26584
Machine Labor
Joshua Angrist; Brigham Frandsen
发表日期2019-12-30
出版年2019
语种英语
摘要Machine learning (ML) is mostly a predictive enterprise, while the questions of interest to labor economists are mostly causal. In pursuit of causal effects, however, ML may be useful for automated selection of ordinary least squares (OLS) control variables. We illustrate the utility of ML for regression-based causal inference by using lasso to select control variables for estimates of effects of college characteristics on wages. ML also seems relevant for an instrumental variables (IV) first stage, since the bias of two-stage least squares can be said to be due to over-fitting. Our investigation shows, however, that while ML-based instrument selection can improve on conventional 2SLS estimates, split-sample IV, jackknife IV, and LIML estimators do better. In some scenarios, the performance of ML-augmented IV estimators is degraded by pretest bias. In others, nonlinear ML for covariate control creates artificial exclusion restrictions that generate spurious findings. ML does better at choosing control variables for models identified by conditional independence assumptions than at choosing instrumental variables for models identified by exclusion restrictions.
主题Econometrics ; Estimation Methods ; Labor Economics
URLhttps://www.nber.org/papers/w26584
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584258
推荐引用方式
GB/T 7714
Joshua Angrist,Brigham Frandsen. Machine Labor. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26584.pdf(822KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Joshua Angrist]的文章
[Brigham Frandsen]的文章
百度学术
百度学术中相似的文章
[Joshua Angrist]的文章
[Brigham Frandsen]的文章
必应学术
必应学术中相似的文章
[Joshua Angrist]的文章
[Brigham Frandsen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26584.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。