G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26586
来源IDWorking Paper 26586
Market Efficiency in the Age of Big Data
Ian Martin; Stefan Nagel
发表日期2019-12-30
出版年2019
语种英语
摘要Modern investors face a high-dimensional prediction problem: thousands of observable variables are potentially relevant for forecasting. We reassess the conventional wisdom on market efficiency in light of this fact. In our model economy, which resembles a typical machine learning setting, N assets have cash flows that are a linear function of J firm characteristics, but with uncertain coefficients. Risk-neutral Bayesian investors impose shrinkage (ridge regression) or sparsity (Lasso) when they estimate the J coefficients of the model and use them to price assets. When J is comparable in size to N, returns appear cross-sectionally predictable using firm characteristics to an econometrician who analyzes data from the economy ex post. A factor zoo emerges even without p-hacking and data-mining. Standard in-sample tests of market efficiency reject the no-predictability null with high probability, despite the fact that investors optimally use the information available to them in real time. In contrast, out-of-sample tests retain their economic meaning.
主题Econometrics ; Estimation Methods ; Financial Economics ; Portfolio Selection and Asset Pricing ; Financial Markets
URLhttps://www.nber.org/papers/w26586
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584260
推荐引用方式
GB/T 7714
Ian Martin,Stefan Nagel. Market Efficiency in the Age of Big Data. 2019.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26586.pdf(867KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ian Martin]的文章
[Stefan Nagel]的文章
百度学术
百度学术中相似的文章
[Ian Martin]的文章
[Stefan Nagel]的文章
必应学术
必应学术中相似的文章
[Ian Martin]的文章
[Stefan Nagel]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26586.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。