Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w26586 |
来源ID | Working Paper 26586 |
Market Efficiency in the Age of Big Data | |
Ian Martin; Stefan Nagel | |
发表日期 | 2019-12-30 |
出版年 | 2019 |
语种 | 英语 |
摘要 | Modern investors face a high-dimensional prediction problem: thousands of observable variables are potentially relevant for forecasting. We reassess the conventional wisdom on market efficiency in light of this fact. In our model economy, which resembles a typical machine learning setting, N assets have cash flows that are a linear function of J firm characteristics, but with uncertain coefficients. Risk-neutral Bayesian investors impose shrinkage (ridge regression) or sparsity (Lasso) when they estimate the J coefficients of the model and use them to price assets. When J is comparable in size to N, returns appear cross-sectionally predictable using firm characteristics to an econometrician who analyzes data from the economy ex post. A factor zoo emerges even without p-hacking and data-mining. Standard in-sample tests of market efficiency reject the no-predictability null with high probability, despite the fact that investors optimally use the information available to them in real time. In contrast, out-of-sample tests retain their economic meaning. |
主题 | Econometrics ; Estimation Methods ; Financial Economics ; Portfolio Selection and Asset Pricing ; Financial Markets |
URL | https://www.nber.org/papers/w26586 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/584260 |
推荐引用方式 GB/T 7714 | Ian Martin,Stefan Nagel. Market Efficiency in the Age of Big Data. 2019. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w26586.pdf(867KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Ian Martin]的文章 |
[Stefan Nagel]的文章 |
百度学术 |
百度学术中相似的文章 |
[Ian Martin]的文章 |
[Stefan Nagel]的文章 |
必应学术 |
必应学术中相似的文章 |
[Ian Martin]的文章 |
[Stefan Nagel]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。