G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26648
来源IDWorking Paper 26648
The Structure of Economic News
Leland Bybee; Bryan T. Kelly; Asaf Manela; Dacheng Xiu
发表日期2020-01-20
出版年2020
语种英语
摘要We propose an approach to measuring the state of the economy via textual analysis of business news. From the full text content of 800,000 Wall Street Journal articles for 1984{2017, we estimate a topic model that summarizes business news as easily interpretable topical themes and quantifies the proportion of news attention allocated to each theme at each point in time. We then use our news attention estimates as inputs into statistical models of numerical economic time series. We demonstrate that these text-based inputs accurately track a wide range of economic activity measures and that they have incremental forecasting power for macroeconomic outcomes, above and beyond standard numerical predictors. Finally, we use our model to retrieve the news-based narratives that underly “shocks” in numerical economic data.
主题Econometrics ; Estimation Methods ; Data Collection ; Macroeconomics ; Macroeconomic Models ; Business Cycles ; Financial Economics ; Financial Markets
URLhttps://www.nber.org/papers/w26648
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584330
推荐引用方式
GB/T 7714
Leland Bybee,Bryan T. Kelly,Asaf Manela,et al. The Structure of Economic News. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26648.pdf(4246KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Leland Bybee]的文章
[Bryan T. Kelly]的文章
[Asaf Manela]的文章
百度学术
百度学术中相似的文章
[Leland Bybee]的文章
[Bryan T. Kelly]的文章
[Asaf Manela]的文章
必应学术
必应学术中相似的文章
[Leland Bybee]的文章
[Bryan T. Kelly]的文章
[Asaf Manela]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26648.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。