Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w26750 |
来源ID | Working Paper 26750 |
An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data | |
Robert J. Hodrick | |
发表日期 | 2020-02-17 |
出版年 | 2020 |
语种 | 英语 |
摘要 | This paper uses simulations to explore the properties of the HP filter of Hodrick and Prescott (1997), the BK filter of Baxter and King (1999), and the H filter of Hamilton (2018) that are designed to decompose a univariate time series into trend and cyclical components. Each simulated time series approximates the natural logarithms of U.S. Real GDP, and they are a random walk, an ARIMA model, two unobserved components models, and models with slowly changing nonstationary stochastic trends and definitive cyclical components. In basic time series, the H filter dominates the HP and BK filters in more closely characterizing the underlying framework, but in more complex models, the reverse is true. |
主题 | Macroeconomics ; Business Cycles |
URL | https://www.nber.org/papers/w26750 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/584424 |
推荐引用方式 GB/T 7714 | Robert J. Hodrick. An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data. 2020. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w26750.pdf(919KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Robert J. Hodrick]的文章 |
百度学术 |
百度学术中相似的文章 |
[Robert J. Hodrick]的文章 |
必应学术 |
必应学术中相似的文章 |
[Robert J. Hodrick]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。