G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w26826
来源IDWorking Paper 26826
Online Estimation of DSGE Models
Michael D. Cai; Marco Del Negro; Edward P. Herbst; Ethan Matlin; Reca Sarfati; Frank Schorfheide
发表日期2020-03-09
出版年2020
语种英语
摘要This paper illustrates the usefulness of sequential Monte Carlo (SMC) methods in approximating DSGE model posterior distributions. We show how the tempering schedule can be chosen adaptively, document the accuracy and runtime benefits of generalized data tempering for “online” estimation (that is, re-estimating a model as new data become available), and provide examples of multimodal posteriors that are well captured by SMC methods. We then use the online estimation of the DSGE model to compute pseudo-out-of-sample density forecasts and study the sensitivity of the predictive performance to changes in the prior distribution. We find that making priors less informative (compared to the benchmark priors used in the literature) by increasing the prior variance does not lead to a deterioration of forecast accuracy.
主题Econometrics ; Estimation Methods ; Macroeconomics ; Business Cycles ; Monetary Policy
URLhttps://www.nber.org/papers/w26826
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584499
推荐引用方式
GB/T 7714
Michael D. Cai,Marco Del Negro,Edward P. Herbst,et al. Online Estimation of DSGE Models. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w26826.pdf(840KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Michael D. Cai]的文章
[Marco Del Negro]的文章
[Edward P. Herbst]的文章
百度学术
百度学术中相似的文章
[Michael D. Cai]的文章
[Marco Del Negro]的文章
[Edward P. Herbst]的文章
必应学术
必应学术中相似的文章
[Michael D. Cai]的文章
[Marco Del Negro]的文章
[Edward P. Herbst]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w26826.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。