G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27002
来源IDWorking Paper 27002
Some Unpleasant Markup Arithmetic: Production Function Elasticities and their Estimation from Production Data
Steve Bond; Arshia Hashemi; Greg Kaplan; Piotr Zoch
发表日期2020-04-20
出版年2020
语种英语
摘要The ratio estimator of a firm's markup is the ratio of the output elasticity of a variable input to that input's cost share in revenue. This note raises issues that concern identification and estimation of markups using the ratio estimator. Concerning identification: (i) if the revenue elasticity is used in place of the output elasticity, then the estimand underlying the ratio estimator does not contain any information about the markup; (ii) if any part of the input bundle is either used to influence demand, or is neither fully fixed nor fully flexible, then the estimand underlying the ratio estimator is not equal to the markup. Concerning estimation: (i) even with data on output quantities, it is challenging to obtain consistent estimates of output elasticities when firms have market power; (ii) without data on output quantities, as is typically the case, it is not possible to obtain consistent estimates of output elasticities when firms have market power and markups are heterogeneous. These issues cast doubt over whether anything useful can be learned about heterogeneity or trends in markups, from recent attempts to apply the ratio estimator in settings without output quantity data.
主题Microeconomics ; Households and Firms ; Market Structure and Distribution ; Industrial Organization ; Market Structure and Firm Performance ; Antitrust
URLhttps://www.nber.org/papers/w27002
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584674
推荐引用方式
GB/T 7714
Steve Bond,Arshia Hashemi,Greg Kaplan,et al. Some Unpleasant Markup Arithmetic: Production Function Elasticities and their Estimation from Production Data. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27002.pdf(513KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Steve Bond]的文章
[Arshia Hashemi]的文章
[Greg Kaplan]的文章
百度学术
百度学术中相似的文章
[Steve Bond]的文章
[Arshia Hashemi]的文章
[Greg Kaplan]的文章
必应学术
必应学术中相似的文章
[Steve Bond]的文章
[Arshia Hashemi]的文章
[Greg Kaplan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27002.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。