G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27014
来源IDWorking Paper 27014
Advances in Structural Vector Autoregressions with Imperfect Identifying Information
Christiane Baumeister; James D. Hamilton
发表日期2020-04-20
出版年2020
语种英语
摘要This paper examines methods for structural interpretation of vector autoregressions when the identifying information is regarded as imperfect or incomplete. We suggest that a Bayesian approach offers a unifying theme for guiding inference in such settings. Among other advantages, the unified approach solves a problem with calculating elasticities that appears not to have been recognized by earlier researchers. We also call attention to some computational concerns of which researchers who approach this problem using other methods should be aware.
主题Econometrics ; Estimation Methods ; Environmental and Resource Economics ; Energy
URLhttps://www.nber.org/papers/w27014
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584686
推荐引用方式
GB/T 7714
Christiane Baumeister,James D. Hamilton. Advances in Structural Vector Autoregressions with Imperfect Identifying Information. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27014.pdf(300KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Christiane Baumeister]的文章
[James D. Hamilton]的文章
百度学术
百度学术中相似的文章
[Christiane Baumeister]的文章
[James D. Hamilton]的文章
必应学术
必应学术中相似的文章
[Christiane Baumeister]的文章
[James D. Hamilton]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27014.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。