G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27151
来源IDWorking Paper 27151
Machine Learning in Gravity Models: An Application to Agricultural Trade
Munisamy Gopinath; Feras A. Batarseh; Jayson Beckman
发表日期2020-05-18
出版年2020
语种英语
摘要Predicting agricultural trade patterns is critical to decision making in the public and private domains, especially in the current context of trade disputes among major economies. Focusing on seven major agricultural commodities with a long history of trade, this study employed data-driven and deep-learning processes: supervised and unsupervised machine learning (ML) techniques – to decipher patterns of trade. The supervised (unsupervised) ML techniques were trained on data until 2010 (2014), and projections were made for 2011-2016 (2014-2020). Results show the high relevance of ML models to predicting trade patterns in near- and long-term relative to traditional approaches, which are often subjective assessments or time-series projections. While supervised ML techniques quantified key economic factors underlying agricultural trade flows, unsupervised approaches provide better fits over the long-term.
主题Econometrics ; Estimation Methods ; International Economics ; Trade ; Environmental and Resource Economics ; Agriculture
URLhttps://www.nber.org/papers/w27151
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584824
推荐引用方式
GB/T 7714
Munisamy Gopinath,Feras A. Batarseh,Jayson Beckman. Machine Learning in Gravity Models: An Application to Agricultural Trade. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27151.pdf(326KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Munisamy Gopinath]的文章
[Feras A. Batarseh]的文章
[Jayson Beckman]的文章
百度学术
百度学术中相似的文章
[Munisamy Gopinath]的文章
[Feras A. Batarseh]的文章
[Jayson Beckman]的文章
必应学术
必应学术中相似的文章
[Munisamy Gopinath]的文章
[Feras A. Batarseh]的文章
[Jayson Beckman]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27151.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。