G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27175
来源IDWorking Paper 27175
Bayesian Adaptive Clinical Trials for Anti\u2010Infective Therapeutics during Epidemic Outbreaks
Shomesh Chaudhuri; Andrew W. Lo; Danying Xiao; Qingyang Xu
发表日期2020-05-18
出版年2020
语种英语
摘要In the midst of epidemics such as COVID-19, therapeutic candidates are unlikely to be able to complete the usual multiyear clinical trial and regulatory approval process within the course of an outbreak. We apply a Bayesian adaptive patient-centered model—which minimizes the expected harm of false positives and false negatives—to optimize the clinical trial development path during such outbreaks. When the epidemic is more infectious and fatal, the Bayesian-optimal sample size in the clinical trial is lower and the optimal statistical significance level is higher. For COVID-19 (assuming a static R₀ – 2 and initial infection percentage of 0.1%), the optimal significance level is 7.1% for a clinical trial of a nonvaccine anti-infective therapeutic and 13.6% for that of a vaccine. For a dynamic R₀ decreasing from 3 to 1.5, the corresponding values are 14.4% and 26.4%, respectively. Our results illustrate the importance of adapting the clinical trial design and the regulatory approval process to the specific parameters and stage of the epidemic.
主题Econometrics ; Estimation Methods ; Experimental Design ; Public Economics ; National Fiscal Issues ; Health, Education, and Welfare ; Health ; COVID-19
URLhttps://www.nber.org/papers/w27175
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/584848
推荐引用方式
GB/T 7714
Shomesh Chaudhuri,Andrew W. Lo,Danying Xiao,et al. Bayesian Adaptive Clinical Trials for Anti\u2010Infective Therapeutics during Epidemic Outbreaks. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27175.pdf(660KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Shomesh Chaudhuri]的文章
[Andrew W. Lo]的文章
[Danying Xiao]的文章
百度学术
百度学术中相似的文章
[Shomesh Chaudhuri]的文章
[Andrew W. Lo]的文章
[Danying Xiao]的文章
必应学术
必应学术中相似的文章
[Shomesh Chaudhuri]的文章
[Andrew W. Lo]的文章
[Danying Xiao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27175.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。