Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w27182 |
来源ID | Working Paper 27182 |
Latent Dirichlet Analysis of Categorical Survey Expectations | |
Evan M. Munro; Serena Ng | |
发表日期 | 2020-05-18 |
出版年 | 2020 |
语种 | 英语 |
摘要 | Beliefs are important determinants of an individual's choices and economic outcomes, so understanding how they differ across individuals is of considerable interest. Researchers often rely on surveys that report individual expectations as qualitative data. We propose using a Bayesian hierarchical latent class model to summarize and interpret observed heterogeneity in categorical expectations data. We show that the statistical model corresponds to an economic structural model of information acquisition, which guides interpretation and estimation of the model parameters. An algorithm based on stochastic optimization is proposed to estimate a model for repeated surveys when beliefs follow a dynamic structure and conjugate priors are not appropriate. Guidance on selecting the number of belief types is also provided. Two examples are considered. The first shows that there is information in the Michigan survey responses beyond the consumer sentiment index that is officially published. The second shows that belief types constructed from survey responses can be used in a subsequent analysis to estimate heterogeneous returns to education. |
主题 | Econometrics ; Estimation Methods ; Macroeconomics |
URL | https://www.nber.org/papers/w27182 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/584855 |
推荐引用方式 GB/T 7714 | Evan M. Munro,Serena Ng. Latent Dirichlet Analysis of Categorical Survey Expectations. 2020. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w27182.pdf(408KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Evan M. Munro]的文章 |
[Serena Ng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Evan M. Munro]的文章 |
[Serena Ng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Evan M. Munro]的文章 |
[Serena Ng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。