G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27335
来源IDWorking Paper 27335
Estimating and Forecasting Disease Scenarios for COVID-19 with an SIR Model
Andrew Atkeson; Karen Kopecky; Tao Zha
发表日期2020-06-08
出版年2020
语种英语
摘要This paper presents a procedure for estimating and forecasting disease scenarios for COVID-19 using a structural SIR model of the pandemic. Our procedure combines the flexibility of noteworthy reduced-form approaches for estimating the progression of the COVID-19 pandemic to date with the benefits of a simple SIR structural model for interpreting these estimates and constructing forecast and counterfactual scenarios. We present forecast scenarios for a devastating second wave of the pandemic as well as for a long and slow continuation of current levels of infections and daily deaths. In our counterfactual scenarios, we find that there is no clear answer to the question of whether earlier mitigation measures would have reduced the long run cumulative death toll from this disease. In some cases, we find that it would have, but in other cases, we find the opposite — earlier mitigation would have led to a higher long-run death toll.
主题Econometrics ; Estimation Methods ; COVID-19
URLhttps://www.nber.org/papers/w27335
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/585006
推荐引用方式
GB/T 7714
Andrew Atkeson,Karen Kopecky,Tao Zha. Estimating and Forecasting Disease Scenarios for COVID-19 with an SIR Model. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27335.pdf(13585KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Andrew Atkeson]的文章
[Karen Kopecky]的文章
[Tao Zha]的文章
百度学术
百度学术中相似的文章
[Andrew Atkeson]的文章
[Karen Kopecky]的文章
[Tao Zha]的文章
必应学术
必应学术中相似的文章
[Andrew Atkeson]的文章
[Karen Kopecky]的文章
[Tao Zha]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27335.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。