G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27373
来源IDWorking Paper 27373
Implications of Heterogeneous SIR Models for Analyses of COVID-19
Glenn Ellison
发表日期2020-06-15
出版年2020
语种英语
摘要This paper provides a quick survey of results on the classic SIR model and variants allowing for heterogeneity in contact rates. It notes that calibrating the classic model to data generated by a heterogeneous model can lead to forecasts that are biased in several ways and to understatement of the forecast uncertainty. Among the biases are that we may underestimate how quickly herd immunity might be reached, underestimate differences across regions, and have biased estimates of the impact of endogenous and policy-driven social distancing.
主题Health, Education, and Welfare ; Health ; COVID-19
URLhttps://www.nber.org/papers/w27373
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/585044
推荐引用方式
GB/T 7714
Glenn Ellison. Implications of Heterogeneous SIR Models for Analyses of COVID-19. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27373.pdf(575KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Glenn Ellison]的文章
百度学术
百度学术中相似的文章
[Glenn Ellison]的文章
必应学术
必应学术中相似的文章
[Glenn Ellison]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27373.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。