Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w27410 |
来源ID | Working Paper 27410 |
Biases in Long-Horizon Predictive Regressions | |
Jacob Boudoukh; Ronen Israel; Matthew P. Richardson | |
发表日期 | 2020-06-22 |
出版年 | 2020 |
语种 | 英语 |
摘要 | Analogous to Stambaugh (1999), this paper derives the small sample bias of estimators in J-horizon predictive regressions, providing a plug-in adjustment for these estimators. A number of surprising results emerge, including (i) a higher bias for overlapping than nonoverlapping regressions despite the greater number of observations, and (ii) particularly higher bias for an alternative long-horizon predictive regression commonly advocated for in the literature. For large J, the bias is linear in (J/T) with a slope that depends on the predictive variable’s persistence. The bias adjustment substantially reduces the existing magnitude of long-horizon estimates of predictability. |
主题 | Econometrics ; Estimation Methods ; Financial Economics ; Portfolio Selection and Asset Pricing ; Financial Markets |
URL | https://www.nber.org/papers/w27410 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/585083 |
推荐引用方式 GB/T 7714 | Jacob Boudoukh,Ronen Israel,Matthew P. Richardson. Biases in Long-Horizon Predictive Regressions. 2020. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w27410.pdf(857KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。