G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27704
来源IDWorking Paper 27704
Nonparametric Identification of Differentiated Products Demand Using Micro Data
Steven T. Berry; Philip A. Haile
发表日期2020-08-17
出版年2020
语种英语
摘要A recent literature considers the identification of heterogeneous demand and supply models via "quasi-experimental'' variation, as from instrumental variables. In this paper we establish nonparametric identification of differentiated products demand when one has "micro data'' linking characteristics of individual consumers to their choices. Micro data provide a panel structure allowing one to exploit variation across consumers within each market, where latent demand shocks are fixed. This facilitates richer demand specifications while substantially softening the reliance on instrumental variables, reducing both the number and types of instruments required. Our results require neither the structure of a "special regressor'' nor a "full support'' assumption on consumer-level observables.
主题Econometrics ; Estimation Methods ; Microeconomics ; Households and Firms ; Industrial Organization
URLhttps://www.nber.org/papers/w27704
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/585376
推荐引用方式
GB/T 7714
Steven T. Berry,Philip A. Haile. Nonparametric Identification of Differentiated Products Demand Using Micro Data. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27704.pdf(358KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Steven T. Berry]的文章
[Philip A. Haile]的文章
百度学术
百度学术中相似的文章
[Steven T. Berry]的文章
[Philip A. Haile]的文章
必应学术
必应学术中相似的文章
[Steven T. Berry]的文章
[Philip A. Haile]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27704.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。