G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w27723
来源IDWorking Paper 27723
Data-intensive Innovation and the State: Evidence from AI Firms in China
Martin Beraja; David Y. Yang; Noam Yuchtman
发表日期2020-08-24
出版年2020
语种英语
摘要Developing AI technology requires data. In many domains, government data far exceeds in magnitude and scope data collected by the private sector, and AI firms often gain access to such data when providing services to the state. We argue that such access can stimulate commercial AI innovation in part because data and trained algorithms are shareable across government and commercial uses. We gather comprehensive information on firms and public security procurement contracts in China’s facial recognition AI industry. We quantify the data accessible through contracts by measuring public security agencies’ capacity to collect surveillance video. Using a triple-differences strategy, we find that data-rich contracts, compared to data-scarce ones, lead recipient firms to develop significantly and substantially more commercial AI software. Our analysis indicates a contribution of government data to the rise of China’s facial recognition AI firms, and suggests that states’ data collection and provision policies could shape AI innovation.
主题Macroeconomics ; Public Economics ; Public Goods ; Industrial Organization ; Regulatory Economics ; Industry Studies ; Development and Growth ; Innovation and R& ; D ; Growth and Productivity ; Other ; Economic Systems ; Culture
URLhttps://www.nber.org/papers/w27723
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/585395
推荐引用方式
GB/T 7714
Martin Beraja,David Y. Yang,Noam Yuchtman. Data-intensive Innovation and the State: Evidence from AI Firms in China. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w27723.pdf(1456KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Martin Beraja]的文章
[David Y. Yang]的文章
[Noam Yuchtman]的文章
百度学术
百度学术中相似的文章
[Martin Beraja]的文章
[David Y. Yang]的文章
[Noam Yuchtman]的文章
必应学术
必应学术中相似的文章
[Martin Beraja]的文章
[David Y. Yang]的文章
[Noam Yuchtman]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w27723.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。