Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w27820 |
来源ID | Working Paper 27820 |
Economic Agents as Imperfect Problem Solvers | |
Cosmin L. Ilut; Rosen Valchev | |
发表日期 | 2020-09-14 |
出版年 | 2020 |
语种 | 英语 |
摘要 | We develop a tractable model of limited cognitive perception of the optimal policy function, with agents using costly reasoning effort to update beliefs about this optimal mapping of economic states into actions. A key result is that agents reason less (more) when observing usual (unusual) states, producing state- and history-dependent behavior. Our application is a standard incomplete markets model with ex-ante identical agents that hold no a-priori behavioral biases. The resulting ergodic distribution of actions and beliefs is characterized by “learning traps”, where locally stable dynamics of wealth generate “familiar” regions of the state space within which behavior appears to follow past-experience-based heuristics. We show qualitatively and quantitatively how these traps have empirically desirable properties: the marginal propensity to consume is higher, hand-to-mouth status is more frequent and persistent, and there is more wealth inequality than in the standard model. |
主题 | Econometrics ; Estimation Methods ; Microeconomics ; Economics of Information ; Behavioral Economics ; Macroeconomics ; Consumption and Investment |
URL | https://www.nber.org/papers/w27820 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/585492 |
推荐引用方式 GB/T 7714 | Cosmin L. Ilut,Rosen Valchev. Economic Agents as Imperfect Problem Solvers. 2020. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w27820.pdf(1072KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Cosmin L. Ilut]的文章 |
[Rosen Valchev]的文章 |
百度学术 |
百度学术中相似的文章 |
[Cosmin L. Ilut]的文章 |
[Rosen Valchev]的文章 |
必应学术 |
必应学术中相似的文章 |
[Cosmin L. Ilut]的文章 |
[Rosen Valchev]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。