G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w28045
来源IDWorking Paper 28045
A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery
Esther Rolf; Jonathan Proctor; Tamma Carleton; Ian Bolliger; Vaishaal Shankar; Miyabi Ishihara; Benjamin Recht; Solomon Hsiang
发表日期2020-11-09
出版年2020
语种英语
摘要Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g. forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance.
主题Econometrics ; Data Collection ; Development and Growth ; Development ; Environmental and Resource Economics ; Environment ; Regional and Urban Economics ; Regional Economics
URLhttps://www.nber.org/papers/w28045
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/585718
推荐引用方式
GB/T 7714
Esther Rolf,Jonathan Proctor,Tamma Carleton,et al. A Generalizable and Accessible Approach to Machine Learning with Global Satellite Imagery. 2020.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w28045.pdf(7751KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Esther Rolf]的文章
[Jonathan Proctor]的文章
[Tamma Carleton]的文章
百度学术
百度学术中相似的文章
[Esther Rolf]的文章
[Jonathan Proctor]的文章
[Tamma Carleton]的文章
必应学术
必应学术中相似的文章
[Esther Rolf]的文章
[Jonathan Proctor]的文章
[Tamma Carleton]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w28045.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。