G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w28293
来源IDWorking Paper 28293
Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases
Jeffrey Grogger; Sean Gupta; Ria Ivandic; Tom Kirchmaier
发表日期2021-01-04
出版年2021
语种英语
摘要We compare predictions from a conventional protocol-based approach to risk assessment with those based on a machine-learning approach. We first show that the conventional predictions are less accurate than, and have similar rates of negative prediction error as, a simple Bayes classifier that makes use only of the base failure rate. Machine learning algorithms based on the underlying risk assessment questionnaire do better under the assumption that negative prediction errors are more costly than positive prediction errors. Machine learning models based on two-year criminal histories do even better. Indeed, adding the protocol-based features to the criminal histories adds little to the predictive adequacy of the model. We suggest using the predictions based on criminal histories to prioritize incoming calls for service, and devising a more sensitive instrument to distinguish true from false positives that result from this initial screening.
主题Other ; Law and Economics
URLhttps://www.nber.org/papers/w28293
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/585966
推荐引用方式
GB/T 7714
Jeffrey Grogger,Sean Gupta,Ria Ivandic,et al. Comparing Conventional and Machine-Learning Approaches to Risk Assessment in Domestic Abuse Cases. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w28293.pdf(1113KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jeffrey Grogger]的文章
[Sean Gupta]的文章
[Ria Ivandic]的文章
百度学术
百度学术中相似的文章
[Jeffrey Grogger]的文章
[Sean Gupta]的文章
[Ria Ivandic]的文章
必应学术
必应学术中相似的文章
[Jeffrey Grogger]的文章
[Sean Gupta]的文章
[Ria Ivandic]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w28293.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。