G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w28328
来源IDWorking Paper 28328
Machine Learning and Perceived Age Stereotypes in Job Ads: Evidence from an Experiment
Ian Burn; Daniel Firoozi; Daniel Ladd; David Neumark
发表日期2021-01-11
出版年2021
语种英语
摘要We explore whether ageist stereotypes in job ads are detectable using machine learning methods measuring the linguistic similarity of job-ad language to ageist stereotypes identified by industrial psychologists. We then conduct an experiment to evaluate whether this language is perceived as biased against older workers. We find that language classified by the machine learning algorithm as closely related to ageist stereotypes is perceived as ageist by experimental subjects. The scores assigned to the language related to ageist stereotypes are larger when responses are incentivized by rewarding participants for guessing how other respondents rated the language. These methods could potentially help enforce anti-discrimination laws by using job ads to predict or identify employers more likely to be engaging in age discrimination.
主题Labor Economics ; Demography and Aging ; Labor Discrimination ; Other ; Law and Economics
URLhttps://www.nber.org/papers/w28328
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/586001
推荐引用方式
GB/T 7714
Ian Burn,Daniel Firoozi,Daniel Ladd,et al. Machine Learning and Perceived Age Stereotypes in Job Ads: Evidence from an Experiment. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w28328.pdf(4017KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ian Burn]的文章
[Daniel Firoozi]的文章
[Daniel Ladd]的文章
百度学术
百度学术中相似的文章
[Ian Burn]的文章
[Daniel Firoozi]的文章
[Daniel Ladd]的文章
必应学术
必应学术中相似的文章
[Ian Burn]的文章
[Daniel Firoozi]的文章
[Daniel Ladd]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w28328.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。