Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w28340 |
来源ID | Working Paper 28340 |
Recipes and Economic Growth: A Combinatorial March Down an Exponential Tail | |
Charles I. Jones | |
发表日期 | 2021-01-18 |
出版年 | 2021 |
语种 | 英语 |
摘要 | New ideas are often combinations of existing goods or ideas, a point emphasized by Romer (1993) and Weitzman (1998). A separate literature highlights the links between exponential growth and Pareto distributions: Gabaix (1999) shows how exponential growth generates Pareto distributions, while Kortum (1997) shows how Pareto distributions generate exponential growth. But this raises a "chicken and egg" problem: which came first, the exponential growth or the Pareto distribution? And regardless, what happened to the Romer and Weitzman insight that combinatorics should be important? This paper answers these questions by demonstrating that combinatorial growth in the number of draws from standard thin-tailed distributions leads to exponential economic growth; no Pareto assumption is required. More generally, it provides a theorem linking the behavior of the max extreme value to the number of draws and the shape of the tail for any continuous probability distribution. |
主题 | Development and Growth ; Growth and Productivity |
URL | https://www.nber.org/papers/w28340 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/586013 |
推荐引用方式 GB/T 7714 | Charles I. Jones. Recipes and Economic Growth: A Combinatorial March Down an Exponential Tail. 2021. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w28340.pdf(312KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Charles I. Jones]的文章 |
百度学术 |
百度学术中相似的文章 |
[Charles I. Jones]的文章 |
必应学术 |
必应学术中相似的文章 |
[Charles I. Jones]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。