G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w28449
来源IDWorking Paper 28449
Addressing Partial Identification in Climate Modeling and Policy Analysis
Charles F. Manski; Alan H. Sanstad; Stephen J. DeCanio
发表日期2021-02-08
出版年2021
语种英语
摘要Numerical simulations of the global climate system provide inputs to integrated assessment modeling for estimating the impacts of greenhouse gas mitigation and other policies to address global climate change. While essential tools for this purpose, computational climate models are subject to considerable uncertainty, including inter-model “structural” uncertainty. Structural uncertainty analysis has emphasized simple or weighted averaging of the outputs of multi-model ensembles, sometimes with subjective Bayesian assignment of probabilities across models. However, choosing appropriate weights is problematic. To use climate simulations in integrated assessment, we propose instead framing climate model uncertainty as a problem of partial identification, or “deep” uncertainty. This terminology refers to situations in which the underlying mechanisms, dynamics, or laws governing a system are not completely known and cannot be credibly modeled definitively even in the absence of data limitations in a statistical sense. We propose the min-max regret (MMR) decision criterion to account for deep climate uncertainty in integrated assessment without weighting climate model forecasts. We develop a theoretical framework for cost-benefit analysis of climate policy based on MMR, and apply it computationally with a simple integrated assessment model. We suggest avenues for further research.
主题Microeconomics ; Economics of Information ; Environmental and Resource Economics ; Environment
URLhttps://www.nber.org/papers/w28449
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/586122
推荐引用方式
GB/T 7714
Charles F. Manski,Alan H. Sanstad,Stephen J. DeCanio. Addressing Partial Identification in Climate Modeling and Policy Analysis. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w28449.pdf(896KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Charles F. Manski]的文章
[Alan H. Sanstad]的文章
[Stephen J. DeCanio]的文章
百度学术
百度学术中相似的文章
[Charles F. Manski]的文章
[Alan H. Sanstad]的文章
[Stephen J. DeCanio]的文章
必应学术
必应学术中相似的文章
[Charles F. Manski]的文章
[Alan H. Sanstad]的文章
[Stephen J. DeCanio]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w28449.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。