G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w28548
来源IDWorking Paper 28548
Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression
Bryan S. Graham; Fengshi Niu; James L. Powell
发表日期2021-03-15
出版年2021
语种英语
摘要We study nonparametric regression in a setting where N(N-1) dyadic outcomes are observed for N randomly sampled units. Outcomes across dyads sharing a unit in common may be dependent (i.e., our dataset exhibits dyadic dependence). We present two sets of results. First, we calculate lower bounds on the minimax risk for estimating the regression function at (i) a point and (ii) under the infinity norm. Second, we calculate (i) pointwise and (ii) uniform convergence rates for the dyadic analog of the familiar Nadaraya-Watson (NW) kernel regression estimator. We show that the NW kernel regression estimator achieves the optimal rates suggested by our risk bounds when an appropriate bandwidth sequence is chosen. This optimal rate differs from the one available under iid data: the effective sample size is smaller and dimension of the regressor vector influences the rate differently.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w28548
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/586220
推荐引用方式
GB/T 7714
Bryan S. Graham,Fengshi Niu,James L. Powell. Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w28548.pdf(600KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bryan S. Graham]的文章
[Fengshi Niu]的文章
[James L. Powell]的文章
百度学术
百度学术中相似的文章
[Bryan S. Graham]的文章
[Fengshi Niu]的文章
[James L. Powell]的文章
必应学术
必应学术中相似的文章
[Bryan S. Graham]的文章
[Fengshi Niu]的文章
[James L. Powell]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w28548.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。