G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w28542
来源IDWorking Paper 28542
Tax Evasion at the Top of the Income Distribution: Theory and Evidence
John Guyton; Patrick Langetieg; Daniel Reck; Max Risch; Gabriel Zucman
发表日期2021-03-22
出版年2021
语种英语
摘要This paper studies tax evasion at the top of the U.S. income distribution using IRS micro-data from (i) random audits, (ii) targeted enforcement activities, and (iii) operational audits. Drawing on this unique combination of data, we demonstrate empirically that random audits underestimate tax evasion at the top of the income distribution. Specifically, random audits do not capture most tax evasion through offshore accounts and pass-through businesses, both of which are quantitatively important at the top. We provide a theoretical explanation for this phenomenon, and we construct new estimates of the size and distribution of tax noncompliance in the United States. In our model, individuals can adopt a technology that would better conceal evasion at some fixed cost. Risk preferences and relatively high audit rates at the top drive the adoption of such sophisticated evasion technologies by high-income individuals. Consequently, random audits, which do not detect most sophisticated evasion, underestimate top tax evasion. After correcting for this bias, we find that unreported income as a fraction of true income rises from 7% in the bottom 50% to more than 20% in the top 1%, of which 6 percentage points correspond to undetected sophisticated evasion. Accounting for tax evasion increases the top 1% fiscal income share significantly.
主题Microeconomics ; Market Structure and Distribution ; Public Economics ; Taxation
URLhttps://www.nber.org/papers/w28542
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/586239
推荐引用方式
GB/T 7714
John Guyton,Patrick Langetieg,Daniel Reck,et al. Tax Evasion at the Top of the Income Distribution: Theory and Evidence. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w28542.pdf(2086KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[John Guyton]的文章
[Patrick Langetieg]的文章
[Daniel Reck]的文章
百度学术
百度学术中相似的文章
[John Guyton]的文章
[Patrick Langetieg]的文章
[Daniel Reck]的文章
必应学术
必应学术中相似的文章
[John Guyton]的文章
[Patrick Langetieg]的文章
[Daniel Reck]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w28542.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。