G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w29242
来源IDWorking Paper 29242
Semiparametric Estimation of Treatment Effects in Randomized Experiments
Susan Athey; Peter J. Bickel; Aiyou Chen; Guido Imbens; Michael Pollmann
发表日期2021-09-13
出版年2021
语种英语
摘要We develop new semiparametric methods for estimating treatment effects. We focus on a setting where the outcome distributions may be thick tailed, where treatment effects are small, where sample sizes are large and where assignment is completely random. This setting is of particular interest in recent experimentation in tech companies. We propose using parametric models for the treatment effects, as opposed to parametric models for the full outcome distributions. This leads to semiparametric models for the outcome distributions. We derive the semiparametric efficiency bound for this setting, and propose efficient estimators. In the case with a constant treatment effect one of the proposed estimators has an interesting interpretation as a weighted average of quantile treatment effects, with the weights proportional to (minus) the second derivative of the log of the density of the potential outcomes. Our analysis also results in an extension of Huber's model and trimmed mean to include asymmetry and a simplified condition on linear combinations of order statistics, which may be of independent interest.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w29242
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/586916
推荐引用方式
GB/T 7714
Susan Athey,Peter J. Bickel,Aiyou Chen,et al. Semiparametric Estimation of Treatment Effects in Randomized Experiments. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w29242.pdf(714KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Susan Athey]的文章
[Peter J. Bickel]的文章
[Aiyou Chen]的文章
百度学术
百度学术中相似的文章
[Susan Athey]的文章
[Peter J. Bickel]的文章
[Aiyou Chen]的文章
必应学术
必应学术中相似的文章
[Susan Athey]的文章
[Peter J. Bickel]的文章
[Aiyou Chen]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w29242.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。