G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w29338
来源IDWorking Paper 29338
Bayesian Learning
Isaac Baley; Laura Veldkamp
发表日期2021-10-04
出版年2021
语种英语
摘要We survey work using Bayesian learning in macroeconomics, highlighting common themes and new directions. First, we present many of the common types of learning problems agents face---signal extraction problems---and trace out their effects on macro aggregates, in different strategic settings. Then we review different perspectives on how agents get their information. Models differ in their motives for information acquisition and the cost of information, or learning technology. Finally, we survey the growing literature on the data economy, where economic activity generates data and the information in data feeds back to affect economic activity.
主题Macroeconomics ; Financial Economics ; Financial Markets
URLhttps://www.nber.org/papers/w29338
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587012
推荐引用方式
GB/T 7714
Isaac Baley,Laura Veldkamp. Bayesian Learning. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w29338.pdf(444KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Isaac Baley]的文章
[Laura Veldkamp]的文章
百度学术
百度学术中相似的文章
[Isaac Baley]的文章
[Laura Veldkamp]的文章
必应学术
必应学术中相似的文章
[Isaac Baley]的文章
[Laura Veldkamp]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w29338.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。