G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w29358
来源IDWorking Paper 29358
Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine
Charles F. Manski
发表日期2021-10-11
出版年2021
语种英语
摘要This paper extends my research applying statistical decision theory to treatment choice with sample data, using maximum regret to evaluate the performance of treatment rules. The specific new contribution is to study as-if optimization using estimates of illness probabilities in clinical choice between surveillance and aggressive treatment. Beyond its specifics, the paper sends a broad message. Statisticians and computer scientists have addressed conditional prediction for decision making in indirect ways, the former applying classical statistical theory and the latter measuring prediction accuracy in test samples. Neither approach is satisfactory. Statistical decision theory provides a coherent, generally applicable methodology.
主题Econometrics ; Estimation Methods ; Health, Education, and Welfare ; Health
URLhttps://www.nber.org/papers/w29358
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587032
推荐引用方式
GB/T 7714
Charles F. Manski. Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w29358.pdf(396KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Charles F. Manski]的文章
百度学术
百度学术中相似的文章
[Charles F. Manski]的文章
必应学术
必应学术中相似的文章
[Charles F. Manski]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w29358.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。