G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w29495
来源IDWorking Paper 29495
Learning About the Long Run
Leland Farmer; Emi Nakamura; Jón Steinsson
发表日期2021-11-22
出版年2021
语种英语
摘要Forecasts of professional forecasters are anomalous: they are biased, forecast errors are autocorrelated, and predictable by forecast revisions. Sticky or noisy information models seem like unlikely explanations for these anomalies: professional forecasters pay attention constantly and have precise knowledge of the data in question. We propose that these anomalies arise because professional forecasters don’t know the model that generates the data. We show that Bayesian agents learning about hard-to-learn features of the data generating process (low frequency behavior) can generate all the prominent aggregate anomalies emphasized in the literature. We show this for two applications: professional forecasts of nominal interest rates for the sample period 1980-2019 and CBO forecasts of GDP growth for the sample period 1976- 2019. Our learning model for interest rates also provides an explanation for deviations from the expectations hypothesis of the term structure that does not rely on time-variation in risk premia.
主题Macroeconomics ; Business Cycles ; Money and Interest Rates ; Financial Economics ; Portfolio Selection and Asset Pricing
URLhttps://www.nber.org/papers/w29495
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587169
推荐引用方式
GB/T 7714
Leland Farmer,Emi Nakamura,Jón Steinsson. Learning About the Long Run. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w29495.pdf(1260KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Leland Farmer]的文章
[Emi Nakamura]的文章
[Jón Steinsson]的文章
百度学术
百度学术中相似的文章
[Leland Farmer]的文章
[Emi Nakamura]的文章
[Jón Steinsson]的文章
必应学术
必应学术中相似的文章
[Leland Farmer]的文章
[Emi Nakamura]的文章
[Jón Steinsson]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w29495.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。