G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w29569
来源IDWorking Paper 29569
Using Neural Networks to Predict Micro-Spatial Economic Growth
Arman Khachiyan; Anthony Thomas; Huye Zhou; Gordon H. Hanson; Alex Cloninger; Tajana Rosing; Amit Khandelwal
发表日期2021-12-20
出版年2021
语种英语
摘要We apply deep learning to daytime satellite imagery to predict changes in income and population at high spatial resolution in US data. For grid cells with lateral dimensions of 1.2km and 2.4km (where the average US county has dimension of 55.6km), our model predictions achieve R2 values of 0.85 to 0.91 in levels, which far exceed the accuracy of existing models, and 0.32 to 0.46 in decadal changes, which have no counterpart in the literature and are 3-4 times larger than for commonly used nighttime lights. Our network has wide application for analyzing localized shocks.
主题Regional and Urban Economics
URLhttps://www.nber.org/papers/w29569
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587243
推荐引用方式
GB/T 7714
Arman Khachiyan,Anthony Thomas,Huye Zhou,et al. Using Neural Networks to Predict Micro-Spatial Economic Growth. 2021.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w29569.pdf(886KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Arman Khachiyan]的文章
[Anthony Thomas]的文章
[Huye Zhou]的文章
百度学术
百度学术中相似的文章
[Arman Khachiyan]的文章
[Anthony Thomas]的文章
[Huye Zhou]的文章
必应学术
必应学术中相似的文章
[Arman Khachiyan]的文章
[Anthony Thomas]的文章
[Huye Zhou]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w29569.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。