Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 报告 |
DOI | 10.3386/w29833 |
来源ID | Working Paper 29833 |
High-Dimensional Factor Models with an Application to Mutual Fund Characteristics | |
Martin Lettau | |
发表日期 | 2022-03-14 |
出版年 | 2022 |
语种 | 英语 |
摘要 | This paper considers extensions of two-dimensional factor models to higher-dimensional data represented as tensors. I describe decompositions of tensors that generalize the standard matrix singular value decomposition and principal component analysis to higher dimensions. I estimate the model using a three-dimensional data set consisting of 25 characteristics of 1,342 mutual funds observed over 34 quarters. The tensor factor models reduce the data dimensionality by 97% while capturing 93% of the variation of the data. I relate higher-dimensional tensor models to standard two-dimensional models and show that the components of the model have clear economic interpretations. |
主题 | Econometrics ; Estimation Methods ; Financial Economics ; Portfolio Selection and Asset Pricing |
URL | https://www.nber.org/papers/w29833 |
来源智库 | National Bureau of Economic Research (United States) |
引用统计 | |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/587506 |
推荐引用方式 GB/T 7714 | Martin Lettau. High-Dimensional Factor Models with an Application to Mutual Fund Characteristics. 2022. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
w29833.pdf(869KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Martin Lettau]的文章 |
百度学术 |
百度学术中相似的文章 |
[Martin Lettau]的文章 |
必应学术 |
必应学术中相似的文章 |
[Martin Lettau]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。