G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w29953
来源IDWorking Paper 29953
Partially Linear Models under Data Combination
Xavier D'; Haultfoeuille; Christophe Gaillac; Arnaud Maurel
发表日期2022-04-18
出版年2022
语种英语
摘要We consider the identification of and inference on a partially linear model, when the outcome of interest and some of the covariates are observed in two different datasets that cannot be linked. This type of data combination problem arises very frequently in empirical microeconomics. Using recent tools from optimal transport theory, we derive a constructive characterization of the sharp identified set. We then build on this result and develop a novel inference method that exploits the specific geometric properties of the identified set. Our method exhibits good performances in finite samples, while remaining very tractable. Finally, we apply our methodology to study intergenerational income mobility over the period 1850-1930 in the United States. Our method allows to relax the exclusion restrictions used in earlier work while delivering confidence regions that are informative.
主题Econometrics ; Estimation Methods ; Labor Economics ; Unemployment and Immigration
URLhttps://www.nber.org/papers/w29953
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587627
推荐引用方式
GB/T 7714
Xavier D',Haultfoeuille,Christophe Gaillac,et al. Partially Linear Models under Data Combination. 2022.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w29953.pdf(707KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xavier D']的文章
[Haultfoeuille]的文章
[Christophe Gaillac]的文章
百度学术
百度学术中相似的文章
[Xavier D']的文章
[Haultfoeuille]的文章
[Christophe Gaillac]的文章
必应学术
必应学术中相似的文章
[Xavier D']的文章
[Haultfoeuille]的文章
[Christophe Gaillac]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w29953.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。