G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w30108
来源IDWorking Paper 30108
Contamination Bias in Linear Regressions
Paul Goldsmith-Pinkham; Peter Hull; Michal Kolesár
发表日期2022-06-06
出版年2022
语种英语
摘要We study regressions with multiple treatments and a set of controls that is flexible enough to purge omitted variable bias. We show these regressions generally fail to estimate convex averages of heterogeneous treatment effects; instead, estimates of each treatment’s effect are contaminated by non-convex averages of the effects of other treatments. We discuss three estimation approaches that avoid such contamination bias, including a new estimator of efficiently weighted average effects. We find minimal bias in a re-analysis of Project STAR, due to idiosyncratic effect heterogeneity. But sizeable contamination bias arises when effect heterogeneity becomes correlated with treatment propensity scores.
主题Econometrics ; Estimation Methods ; Experimental Design
URLhttps://www.nber.org/papers/w30108
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587781
推荐引用方式
GB/T 7714
Paul Goldsmith-Pinkham,Peter Hull,Michal Kolesár. Contamination Bias in Linear Regressions. 2022.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w30108.pdf(587KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Paul Goldsmith-Pinkham]的文章
[Peter Hull]的文章
[Michal Kolesár]的文章
百度学术
百度学术中相似的文章
[Paul Goldsmith-Pinkham]的文章
[Peter Hull]的文章
[Michal Kolesár]的文章
必应学术
必应学术中相似的文章
[Paul Goldsmith-Pinkham]的文章
[Peter Hull]的文章
[Michal Kolesár]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w30108.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。