G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w30138
来源IDWorking Paper 30138
Targeting Impact versus Deprivation
Johannes Haushofer; Paul Niehaus; Carlos Paramo; Edward Miguel; Michael W. Walker
发表日期2022-06-13
出版年2022
语种英语
摘要Targeting is a core element of anti-poverty program design, with benefits typically targeted to those most “deprived” in some sense (e.g., consumption, wealth). A large literature in economics examines how to best identify these households feasibly at scale, usually via proxy means tests (PMTs). We ask a different question, namely, whether targeting the most deprived has the greatest social welfare benefit: in particular, are the most deprived those with the largest treatment effects or do the “poorest of the poor” sometimes lack the circumstances and complementary inputs or skills to take full advantage of assistance? We explore this potential trade-off in the context of an NGO cash transfer program in Kenya, utilizing recent advances in machine learning (ML) methods (specifically, generalized random forests) to learn PMTs that target both a) deprivation and b) high conditional average treatment effects across several policy-relevant outcomes. We find that targeting solely on the basis of deprivation is generally not attractive in a social welfare sense, even when the social planner's preferences are highly redistributive. We show that a planner using simpler prediction models, based on OLS or less sophisticated ML approaches, could reach divergent conclusions. We discuss implications for the design of real-world anti-poverty programs at scale.
主题Econometrics ; Estimation Methods ; Public Economics ; Taxation ; Development and Growth ; Development
URLhttps://www.nber.org/papers/w30138
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587810
推荐引用方式
GB/T 7714
Johannes Haushofer,Paul Niehaus,Carlos Paramo,et al. Targeting Impact versus Deprivation. 2022.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w30138.pdf(906KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Johannes Haushofer]的文章
[Paul Niehaus]的文章
[Carlos Paramo]的文章
百度学术
百度学术中相似的文章
[Johannes Haushofer]的文章
[Paul Niehaus]的文章
[Carlos Paramo]的文章
必应学术
必应学术中相似的文章
[Johannes Haushofer]的文章
[Paul Niehaus]的文章
[Carlos Paramo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w30138.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。