G2TT
来源类型Working Paper
规范类型报告
DOI10.3386/w30302
来源IDWorking Paper 30302
Long Story Short: Omitted Variable Bias in Causal Machine Learning
Victor Chernozhukov; Carlos Cinelli; Whitney Newey; Amit Sharma; Vasilis Syrgkanis
发表日期2022-08-01
出版年2022
语种英语
摘要We derive general, yet simple, sharp bounds on the size of the omitted variable bias for a broad class of causal parameters that can be identified as linear functionals of the conditional expectation function of the outcome. Such functionals encompass many of the traditional targets of investigation in causal inference studies, such as, for example, (weighted) average of potential outcomes, average treatment effects (including subgroup effects, such as the effect on the treated), (weighted) average derivatives, and policy effects from shifts in covariate distribution -- all for general, nonparametric causal models. Our construction relies on the Riesz-Frechet representation of the target functional. Specifically, we show how the bound on the bias depends only on the additional variation that the latent variables create both in the outcome and in the Riesz representer for the parameter of interest. Moreover, in many important cases (e.g, average treatment effects and avearage derivatives) the bound is shown to depend on easily interpretable quantities that measure the explanatory power of the omitted variables. Therefore, simple plausibility judgments on the maximum explanatory power of omitted variables (in explaining treatment and outcome variation) are sufficient to place overall bounds on the size of the bias. Furthermore, we use debiased machine learning to provide flexible and efficient statistical inference on learnable components of the bounds. Finally, empirical examples demonstrate the usefulness of the approach.
主题Econometrics ; Estimation Methods
URLhttps://www.nber.org/papers/w30302
来源智库National Bureau of Economic Research (United States)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/587975
推荐引用方式
GB/T 7714
Victor Chernozhukov,Carlos Cinelli,Whitney Newey,et al. Long Story Short: Omitted Variable Bias in Causal Machine Learning. 2022.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
w30302.pdf(560KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Victor Chernozhukov]的文章
[Carlos Cinelli]的文章
[Whitney Newey]的文章
百度学术
百度学术中相似的文章
[Victor Chernozhukov]的文章
[Carlos Cinelli]的文章
[Whitney Newey]的文章
必应学术
必应学术中相似的文章
[Victor Chernozhukov]的文章
[Carlos Cinelli]的文章
[Whitney Newey]的文章
相关权益政策
暂无数据
收藏/分享
文件名: w30302.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。