Gateway to Think Tanks
来源类型 | Working Paper |
规范类型 | 论文 |
RCTs Against the Machine: Can Machine Learning Prediction Methods Recover Experimental Treatment Effects? | |
Brian Prest; Casey Wichman; Karen Palmer | |
发表日期 | 2021-09-29 |
出版年 | 2021 |
语种 | 英语 |
摘要 | RFF researchers examine how well machine learning counterfactual prediction tools can estimate causal treatment effects. |
主题 | Policy Design and Evaluation,Electricity Markets |
URL | https://www.rff.org/publications/working-papers/rcts-against-the-machine-can-machine-learning-prediction-methods-recover-experimental-treatment-effects/ |
来源智库 | Resources for the Future (United States) |
资源类型 | 智库出版物 |
条目标识符 | http://119.78.100.153/handle/2XGU8XDN/588499 |
推荐引用方式 GB/T 7714 | Brian Prest,Casey Wichman,Karen Palmer. RCTs Against the Machine: Can Machine Learning Prediction Methods Recover Experimental Treatment Effects?. 2021. |
条目包含的文件 | ||||||
文件名称/大小 | 资源类型 | 版本类型 | 开放类型 | 使用许可 | ||
RCTs_Against_the_Mac(1626KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | 浏览 | ||
RCTs_Against_the_Mac(109KB) | 智库出版物 | 限制开放 | CC BY-NC-SA | ![]() 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。