G2TT
来源类型Articles
规范类型论文
DOI10.1016/j.rse.2016.03.028
ISSN0034-4257
Canopy cover estimation in miombo woodlands of Zambia: Comparison of Landsat 8 OLI versus RapidEye imagery using parametric, nonparametric, and semiparametric methods
Brockhaus, M.; Korhonen-Kurki, K.; Sehring, J.; Di Gregorio, M.; Assembe-Mvondo, S.; Babon, A.; Bekele, M.; Gebara, M.F.; Khatri, D.B.; Kambire, H.; Kengoum Djiegni, F.; Kweka, D.; Menton, M.; Moeliono, M.; Paudel, N.S.; Pham, T.T.; Resosudarmo, I.A.P.; Sitoe, A.; Wunder, S.; Zida, M.
发表日期2016
出处Remote Sensing of Environment 179: 170-182
出版年2016
语种英语
摘要

Acquiring forest resources information for tropical developing countries is challenging due to financial and logistical constraints. Yet, this information is critical for enhancing management capability and engaging in international initiatives such as Reducing Emissions from Deforestation and forest Degradation (REDD +). The use of multi-source inventories (i.e., remote-sensing, field, and other data) in integrated models has shown increasing promise for accurately estimating forest attributes at lower costs. In this study, we compared the use of Landsat 8 OLI versus RapidEye satellite imagery in four modeling approaches (generalized linear model (GLM), generalized additive model (GAM), k-Nearest Neighbors (k-NN), Random Forests), with and without auxiliary information (e.g., soils characteristics, distance to roads, etc.) to estimate percent canopy cover by pixel for an ~ 1,000,000 ha area in Zambia. We derived plot-level canopy cover as the dependent variable, using field-measured data collected according to current National Forest Inventory (NFI) protocol. Using cross-validation statistics, Landsat 8 OLI exhibited better results than RapidEye across modeling approaches likely due to the additional short-wave infrared bands which consistently improved model performance (average root mean squared prediction error = 10.1% versus 11.0%). The GAM approach was more precise, though more challenging to fit. For both remote sensing data sources and all modeling approaches, other auxiliary information improved the model; soil variables were commonly selected for inclusion using a Genetic Algorithm. Using a binomial GAM with Landsat 8 OLI and soil variables, and by applying the current FAO forest/non-forest definition (i.e., canopy cover > 10% for a 0.5 ha area), we estimated the total forest area as 758,100 ha (95% bootstrapped confidence interval of ± 3,953 ha). Overall, our research indicates that sufficiently accurate forest area estimates for Zambia can be obtained using canopy cover GAM models that incorporate NFI data and freely-available remote sensing imagery and soil information.

主题forest inventories ; deforestation ; degradation ; satellite imagery ; remote sensing
区域Zambia
URLhttps://www.cifor.org/library/6216/
来源智库Center for International Forestry Research (Indonesia)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/93412
推荐引用方式
GB/T 7714
Brockhaus, M.,Korhonen-Kurki, K.,Sehring, J.,et al. Canopy cover estimation in miombo woodlands of Zambia: Comparison of Landsat 8 OLI versus RapidEye imagery using parametric, nonparametric, and semiparametric methods. 2016.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
00344257.jpg(203KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Brockhaus, M.]的文章
[Korhonen-Kurki, K.]的文章
[Sehring, J.]的文章
百度学术
百度学术中相似的文章
[Brockhaus, M.]的文章
[Korhonen-Kurki, K.]的文章
[Sehring, J.]的文章
必应学术
必应学术中相似的文章
[Brockhaus, M.]的文章
[Korhonen-Kurki, K.]的文章
[Sehring, J.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 00344257.jpg
格式: JPEG

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。