G2TT
来源类型Articles
规范类型论文
DOIhttps://doi.org/10.1007/s11027-018-9815-y
ISSN1381-2386
Better estimates of soil carbon from geographical data: a revised global approach
Lau, A.; Bentley, L.P.; Martius, C.; Shenkin, A.; Bartholomeus, H.; Raumonen, P.; Malhi, Y.; Jackson, T.; Herold, M.
发表日期2018
出处Mitigation and Adaptation Strategies for Global Change
出版年2018
页码18p
语种英语
摘要

Soils hold the largest pool of organic carbon (C) on Earth; yet, soil organic carbon (SOC) reservoirs are not well represented in climate change mitigation strategies because our database for ecosystems where human impacts are minimal is still fragmentary. Here, we provide a tool for generating a global baseline of SOC stocks. We used partial least square (PLS) regression and available geographic datasets that describe SOC, climate, organisms, relief, parent material and time. The accuracy of the model was determined by the root mean square deviation (RMSD) of predicted SOC against 100 independent measurements. The best predictors were related to primary productivity, climate, topography, biome classification, and soil type. The largest C stocks for the top 1 m were found in boreal forests (254 ± 14.3 t ha-1) and tundra (310 ± 15.3 t ha-1). Deserts had the lowest C stocks (53.2 ± 6.3 t ha-1) and statistically similar C stocks were found for temperate and Mediterranean forests (142 – 221 t ha-1), tropical and subtropical forests (94 – 143 t ha-1) and grasslands (99-104 t ha-1). Solar radiation, evapotranspiration, and annual mean temperature were negatively correlated with SOC, whereas soil water content was positively correlated with SOC. Our model explained 49% of SOC variability, with RMSD (0.68) representing approximately 14% of observed C stock variance, overestimating extremely low and underestimating extremely high stocks, respectively. Our baseline PLS predictions of SOC stocks can be used for estimating the maximum amount of C that may be sequestered in soils across biomes.

主题soil organic carbon ; geographic information systems ; climate ; ecosystems
URLhttps://www.cifor.org/library/6909/
来源智库Center for International Forestry Research (Indonesia)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/93892
推荐引用方式
GB/T 7714
Lau, A.,Bentley, L.P.,Martius, C.,et al. Better estimates of soil carbon from geographical data: a revised global approach. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
13812386.jpg(7KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Lau, A.]的文章
[Bentley, L.P.]的文章
[Martius, C.]的文章
百度学术
百度学术中相似的文章
[Lau, A.]的文章
[Bentley, L.P.]的文章
[Martius, C.]的文章
必应学术
必应学术中相似的文章
[Lau, A.]的文章
[Bentley, L.P.]的文章
[Martius, C.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 13812386.jpg
格式: JPEG

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。