G2TT
来源类型Articles
规范类型论文
DOIhttps://doi.org/10.1111/geb.12803
ISSN1466-8238
Pan-tropical prediction of forest structure from the largest trees
Ahammad, R; Stacey, N.; Sunderland, T.C.H.
发表日期2018
出处Global Ecology and Biogeography 27(11)
出版年2018
语种英语
摘要

Large tropical trees form the interface between ground and airborne observations, offering a unique opportunity to capture forest properties remotely and to investigate their variations on broad scales. However, despite rapid development of metrics to characterize the forest canopy from remotely sensed data, a gap remains between aerial and field inventories. To close this gap, we propose a new pan-tropical model to predict plot-level forest structure properties and biomass from only the largest trees. Using a dataset of 867 plots distributed among 118 sites across the tropics, we tested the prediction of the quadratic mean diameter, basal area, Lorey’s height, community wood density and aboveground biomass (AGB) from the ith largest trees. Measuring the largest trees in tropical forests enables unbiased predictions of plot- and site-level forest structure. The 20 largest trees per hectare predicted quadratic mean diameter, basal area, Lorey’s height, community wood density and AGB with 12, 16, 4, 4 and 17.7% of relative error, respectively. Most of the remaining error in biomass prediction is driven by differences in the proportion of total biomass held in medium-sized trees (50-70 cm diameter at breast height), which shows some continental dependency, with American tropical forests presenting the highest proportion of total biomass in these intermediate-diameter classes relative to other continents. Our approach provides new information on tropical forest structure and can be used to generate accurate field estimates of tropical forest carbon stocks to support the calibration and validation of current and forthcoming space missions. It will reduce the cost of field inventories and contribute to scientific understanding of tropical forest ecosystems and response to climate change.

主题trees ; carbon ; climate change ; tropical forests
URLhttps://www.cifor.org/library/7216/
来源智库Center for International Forestry Research (Indonesia)
引用统计
资源类型智库出版物
条目标识符http://119.78.100.153/handle/2XGU8XDN/94007
推荐引用方式
GB/T 7714
Ahammad, R,Stacey, N.,Sunderland, T.C.H.. Pan-tropical prediction of forest structure from the largest trees. 2018.
条目包含的文件
文件名称/大小 资源类型 版本类型 开放类型 使用许可
14668238.jpg(24KB)智库出版物 限制开放CC BY-NC-SA浏览
ABastin1801.pdf(1364KB)智库出版物 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ahammad, R]的文章
[Stacey, N.]的文章
[Sunderland, T.C.H.]的文章
百度学术
百度学术中相似的文章
[Ahammad, R]的文章
[Stacey, N.]的文章
[Sunderland, T.C.H.]的文章
必应学术
必应学术中相似的文章
[Ahammad, R]的文章
[Stacey, N.]的文章
[Sunderland, T.C.H.]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 14668238.jpg
格式: JPEG
文件名: ABastin1801.pdf
格式: Adobe PDF
此文件暂不支持浏览

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。